1. Литейные свойства сплавов
В производстве отливок важную роль играют литейные свойства сплавов, обеспечивающие хорошее заполнение литейной формы и получение отливок без дефектов — раковин, трещин и др. К основным литейным свойствам сплавов относятся: жидкотекучесть, заполняемость, усадка и ликвация.
Жидкотекучесть — это способность металлов и сплавов течь по каналам формы и заполнять ее.
Заполнение литейных форм является сложным гидродинамическим и физико-химическим процессом. Главным фактором, определяющим уровень жидкотекучести, являются свойства сплава в жидком состоянии: теплофизические свойства, особенности кристаллизации, вязкость, окисляемость.
Влияние литейной формы связано главным образом с ее теплофизическими свойствами, со смачиваемостью жидким металлом, с условиями физико-химического взаимодействия «металл — форма».
На жидкотекучесть влияют условия плавки и заливки, перегрев металла, насыщение металла посторонними включениями, условия подвода металла к форме.
Например, чем выше температура заливки сплава, тем больше его жидкотекучесть. Жидкотекучесть чугуна увеличивается с увеличением содержания в нем фосфора, кремния и углерода. Сера и марганец понижают жидкотекучесть.
Количественные значения жидкотекучести определяют по длине заполнения канала литейной формы с определенной площадью поперечного сечения. Наибольшее распространение получили технологические спиральные пробы. В специальную литейную форму, имеющую спиралевидный канал, заливают испытуемый расплав. Форму изготовляют по модели стандартной пробы на жидкотекучесть. Чем более длинный участок спирали заполнит заливаемый в нее металл, тем выше его жидкотекучесть. Для удобства вычисления длины залитой спирали на ее верхней поверхности через каждые 50 мм расположены точки. Таким образом, жидкотекучесть металла определяется длиной залитой спирали, выраженной в миллиметрах или точках.
При теоретическом анализе характеристики жидкотекучести основным является определение условий остановки движущегося потока. Высказано несколько точек зрения на механизм остановки потока: выделение 20% твердой фазы, образование на конце потока прочной твердой корочки, рост в канале литейной формы дендритов (древовидных кристаллов), препятствующих движению потока, накопление твердых кристаллов на конце потока.
Течение металла в литейной форме сопровождается кристаллизацией. Поэтому движущийся поток рассматривают как гетерогенную жидкость. Из гидравлики известно, что движение таких жидкостей начинается только после того, как касательное напряжение становится больше определенного значения σ0, называемого предельным напряжением сдвига.
При поступлении металла в канал литейной формы на стенках канала образуется твердая корочка из-за высокой интенсивности охлаждения металла в начальные моменты. С течением времени, по мере прогревания формы, интенсивность теплоотвода уменьшается. Но перенос теплоты к корочке за счет поступления новых порций металла остается постоянным, и она начинает оплавляться. Уменьшению размеров корочки способствует также смывание части кристаллов движущимся потоком. Накопление обломков кристаллов на конце потока приводит к постепенному нарастанию сил внутреннего трения. Условия течения металла заметно ухудшаются. Наконец в определенный момент количество накопившихся обломков становится настолько большим, а сопротивление внутреннему трению настолько значительным, что поток останавливается. Схема остановки потока металла показана на рис. 1.1.
Рис. 1.1. Схема остановки потока металла
Заполняемость характеризует способность металлов и сплавов воспроизводить контур отливок в особо тонких сечениях, где в значительной степени проявляется действие капиллярных сил.
Заполнение тонких сечений отливок — это процесс взаимодействия металла и формы. Иногда этот процесс называют формовоспроизведением или формозаполнением.
Заполняемость обусловлена рядом факторов:
1) поверхностным натяжением сплава и смачиваемостью формы;
2) вязкостью сплава, связанной с его теплофизическими свойствами;
3) температурным интервалом кристаллизации;
4) формой и размерами первичных кристаллов;
5) склонностью сплава к пленообразованию;
6) теплофизическими свойствами формы;
7) способом заливки металла;
8 ) конструктивными особенностями литниковой системы;
9) наличием газов в форме и условиями ее вентиляции.
Эффективным средством, улучшающим заполнение тонких элементов отливок, является центробежная заливка.
Усадка — это уменьшение объема сплава, залитого в форму, при его охлаждении. Уменьшение объема сплава при охлаждении до температуры затвердевания и при затвердевании называется объемной усадкой. Уменьшение линейных размеров отливки по сравнению с размерами модели называется линейной усадкой.
Значение усадки сплава в литейной форме зависит от его химического состава, конфигурации отливаемого изделия, температуры заливки в форму, скорости охлаждения в форме и других факторов. Среднее значение линейной усадки серого чугуна около 1%, стали — 2%, медных сплавов — 1,5%.
Усадка — отрицательное явление, потому что при ней изменяются объем и размеры изготовляемых отливок, она является причиной образования в отливках усадочных раковин, пористости, внутренних напряжений, вызывающих появление коробления и трещин.
Ликвация — неоднородность химического состава сплава в различных частях сечения отливки, возникающая при его кристаллизации. Наиболее заметна ликвация в массивных сечениях отливки.